Graphs, A Powerful Tool
Graphs, A Powerful Tool for Computer Science
Graphs are one of the most important and versatile data structures in computer science. They can model complex relationships between data items, such as networks, hierarchies, dependencies, similarities, and more. Graphs can also capture various properties of data, such as direction, weight, distance, and connectivity.
Graphs have many applications in different domains of computer science, such as:
- Graph matching: Finding a subset of edges in a graph that matches a given set of vertices or criteria. Graph matching can be used for tasks such as image registration, object recognition, face detection, and pattern recognition.
- Laplacian of graph: A matrix that represents the degree of connectivity and similarity between vertices in a graph. Laplacian of graph can be used for tasks such as spectral clustering, dimensionality reduction, graph embedding, and graph partitioning.
- Graph in biology: Using graphs to model biological phenomena, such as gene networks, protein interactions, metabolic pathways, phylogenetic trees, and neural networks.
- Graph neural networks: A type of neural network that operates on graph-structured data. Graph neural networks can learn from both the features and the structure of graphs, and can be used for tasks such as node classification, link prediction, graph generation, and graph representation learning.
Here, we will share some of our works in the area of graph theory and its applications. We will show how graphs can help us understand and solve various problems in computer science. We hope you will find these works interesting and useful.
References
2024
2023
2021
2020
2019
- بررسی نا کارآمدی الگوریتم کارگر در برش کمینه گرافهای وزن دارIn سومین سمینار کنترل و بهینهسازی, Feb 2019Inefficiency of the Karger’s Algorithm in Min-Cut of Weighted Graph
- محاسبه بعد متریک گراف با الگوریتم شبیهسازی تبریدیIn سومین سمینار کنترل و بهینهسازی, Feb 2019Computing Graph Metric Dimension using Simulated Annealing
2018
- مقدار دهی اولیه گرادیان مزدوج در خوشه بندی طیفی با الگوریتم ژنتیکIn ششمین سمینار آنالیز هارمونیک و کاربردها, Feb 2018Conjugate Gradient Initilization using GA in Spectral Clustering
2017
- یک حد بالا برای حداقل تعداد تطابقات درست در مسئله تطابق گراف با روشهای مبتنی بر جستجوی تصادفیIn چهل و هشتمین کنفرانس ریاضی ایران, Feb 2017An Upper Bound for Minimum True Matches in Graph Isomorphism with Stochastic Methods
2015
- محاسبه پارامترهای خوشهبندی طیفی در تصاویر MRI با الگوریتم ژنتیکIn هشتمین کنفرانس بینالمللی انجمن ایرانی تحقیق در عملیات, Feb 2015Genetic Algorithms for Spectral Clustering Parameter Estimation
2014
- برش کمینهی گراف باجستجوی ممنوعهIn هفتمین کنفرانس بینالمللی انجمن ایرانی تحقیق در عملیات, Feb 2014Graph Minumum Cut using Tabu Search
2009
- Regional Varying Image Super-ResolutionIn IEEE International Joint Conference on Computational Sciences and Optimization, Apr 2009Indexed by IEEE Computer Society, ACM and DBLP